Numerical schemes for degenerate boundary value problems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 26 L413
(http://iopscience.iop.org/0305-4470/26/8/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 21:07

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Numerical schemes for degenerate boundary value problems

J W Mooney
Department of Mathematics, Glasgow Caledonian University, Glasgow G4 0BA, UK

Received 1 December 1992

Abstract

Methods for accurately determining solutions of degenerate boundary value problems are described. Nonlinear problems are first approximated by sequences of linear problems. A finite difference procedure which incorporates the effect of the degeneracy in the matrix of the linear discretized system of equations is developed. The simple tridiagonal structure of the matrix allows fast, accurate calculations to be performed with quite modest computer support. The results are readily improved using Richardson extrapolation.

Various physically important phenomena have been described using differential equations which degenerate at the boundary. These equations may be linear or nonlinear, and their solution causes numerical difficulties due to at least one of the derivatives of the solution becoming infinite at a boundary value [9]. In the case of nonlinear problems a quasilinearizaton technique [3] is often applicable, producing a sequence of degenerate linear differential equations converging to a solution of the nonlinear problem [15, 16]. However, approximation of a degenerate problem using a standard finite difference scheme is rarely satisfactory, particularly near the source of the degeneracy. Our aim is to illustrate how a new discretization technique can be used to provide accurate solutions simply and rather efficiently.

In many physical systems described by partial differential equations involving the Laplacian and the Dirichlet boundary conditions, the property of radial symmetry allows a reduction to a differential equation with one independent space variable (ordinary differential equation) or a partial differential equation in exactly two (one space, one time) variables. The dependency of the solution u on the 'radial' space variable r will then involve terms of the form $u^{\prime \prime}+(b / r) u^{\prime}$. This is the case for nonlinear reaction-diffusion equations [10] where radially symmetric solutions play a useful role. The cubic Schrödinger equation in ($n+1$)-dimensional spacetime reduces to a form containing the space derivatives $u^{\prime \prime}+((n-1) / r) u^{\prime}$. Particular cases arise in nonlinear optics, where $n=2$ and u is the envelope of an electromagnetic wave [12], and plasma physics, where $n=3$ and u is the envelope of a Langmuir wave [11]. There are physical applications for non-integral values of b also. In the theory of generalized axially symmetric heat potentials, values of b in the interval [0,2] arise when describing the conduction of heat in bodies of various shapes [1,19]. Finally, even when a problem is not inherently symmetrical, radially symmetric solutions may be a launchpad for a perturbation analysis [18].

However, one major problem associated with the reduction process we have described arises when a boundary condition at $r=0$ is present. The differential form $u^{\prime \prime}+(b / r) u^{\prime}$ will have an unwelcome singularity when $b \neq 0$, and degeneracy is said to occur at $r=0$.

To analyse this situation further, we consider the ordinary differential equation $u^{\prime \prime}+(b / r) u^{\prime}+f(r) g(u)=0$, where f and g are continuous functions. This is equivalent to the equation

$$
\begin{equation*}
\left(r^{b} u^{\prime}\right)^{\prime}+r^{b} f(r) g(u)=0 \tag{1}
\end{equation*}
$$

When $f(r)=r^{a}$ and $g(u)=u^{c}$, with a, b, c real numbers and $c>0,(1)$ is the EmdenFowler equation. For $a=0, b=2, c=n$, typically 1.5 or $2.5,(1)$ is of importance in gas dynamics [5,6]. There are more recent applications in fluid mechanics, relativistic mechanics, nuclear physics and chemically reacting systems and excellent bibliographies have been published [13,21]. Equation (1) can be further reduced to the form $y^{\prime \prime}(x)+h(x, y(x))=0$ by a Liouville transformation. When f, g are power functions, then h is a product of powers of x and y. Consequently, there are many physical phenomena whose behaviour can be related to the solution y of the nonlinear equation $y^{\prime \prime}(x)=c x^{p} y^{q}(x),(c=$ constant $)$.

For illustration, we apply the numerical procedure to the degenerate two point boundary value problem [7]:

$$
\begin{equation*}
y^{\prime \prime}(x)=x^{p} y^{q}(x) \tag{2}
\end{equation*}
$$

with $-2<p<0, q>1$, and $y(0)=1, y(a)=0$. The particular case $p=-\frac{1}{2}, q=\frac{3}{2}$ arises in the case of an ionized atom in Thomas-Fermi theory [8,20].

We specify the nature of a degeneracy by means of the limit

$$
\lim _{x \rightarrow p}\left\{y^{R}(x)(x-p)^{P}\right\}=k
$$

where y^{r} is the r th derivative of any solution, p is a boundary point, k is a real constant, $R=\min \left\{r: y^{r}(a)\right.$ is infinite $\}$, and P is the smallest positive rational number for which the limit is finite. The degeneracy is said to be of order (R, P) at $x=p$ or the differential equation to be (degenerate) of class D_{P}^{R} at $x=p$. The problem (2) will be approximated by sequences of linear two point boundary value problems each being discretized to form a tridiagonal matrix system. Accurate numerical solutions can be obtained when the equation is of class D_{P}^{2}, with $0<P<1$ at $x=0$. If $p<-1$, the problem is of class D_{-1-p}^{1} and the solution of the discretized equations will not represent the solution of the nonlinear problem as accurately in this case.

The first step is to obtain algorithms for the sequence of linear boundary value problems which can be used to approximate the problem. The problem (2) is transformed to the form

$$
\begin{align*}
& -\ddot{u}(t)+a^{2+p} q t^{p} u(t)=a^{2+p} t^{p}[(1-t)-u(t)]^{q}+a^{2+p} q t^{p} u(t) \tag{3}\\
& u(0)=u(1)=0
\end{align*}
$$

which is a generalization of the form (5.2) in [15], possessing homogeneous boundary conditions, and a solution $u(t)$ satisfying $u(t)=(1-t)-y(t a)=(1-x / a)-y(x)$, for x in $[0, a]$.

Generalizing on the method for developing the algorithm (3.3) in [15], we obtain

$$
\begin{align*}
& -u_{n+1}^{\prime \prime}(t)+a^{2+p} q t^{p} u_{n+1}(t)=a^{2+p} t^{p}\left[(1-t)-u_{n}(t)\right]^{q}+a^{2+p} q t^{p} u_{n}(t) \tag{4}\\
& u_{n+1}(0)=u_{n+1}(1)=0
\end{align*}
$$

converging monotonically upwards from $u_{0}(t)=0$ and downwards from $u_{0}(t)=1-t$ to the solution of the transformed general Emden problem (3).

Putting $u_{i}(t)=(1-t)-w_{t}(t)$ in (4) above gives

$$
\begin{align*}
& w_{n+1}^{\prime \prime}(t)-a^{2+p} q t^{p} w_{n+1}(t)=a^{2+p} t^{p}\left\{\left[w_{n}(t)\right]^{q}-q w_{n}(t)\right\} \\
& w_{n+1}(0)=1 \quad w_{n+1}(1)=0 \tag{5}
\end{align*}
$$

with $w(t)=y(t a)=y(x)$, and $w_{n}(t)$ converging to the solution of the problem

$$
\begin{align*}
& w^{\prime \prime}(t)=a^{2+p} t^{p} w^{q}(t) \tag{6}\\
& w(0)=1 \quad w(1)=0
\end{align*}
$$

This algorithmic scheme has linear or first-order convergence. A faster, one-sided scheme, may be obtained by quasilinearization. Thus, for a particular problem, this approach is capable of providing several numerical schemes whose results can be compared. Generalizing on the algorithm (3.4) in [15], we can obtain the second-order scheme
$-v_{n+1}^{\prime \prime}(t)=a^{2+p_{t}}{ }^{p}\left[(1-t)-v_{n}(t)\right]^{q}-a^{2+p} q t^{p}\left[(1-t)-v_{n}(t)\right]^{q-1}\left\{v_{n+1}(t)-v_{n}(t)\right\}$
$v_{n+1}(0)=v_{n+1}(1)=0$
which converges monotonically upwards from $v_{0}(t)=0$ to the solution of the transformed Emden problem (3) above, on the interval $[0,1)$.

Now putting $v_{1}(t)=(1-t)-w_{i}(t)$ in (7) gives

$$
\begin{align*}
& w_{n+1}^{\prime \prime}(t)-a^{2+p} q t^{p}\left[w_{n}(t)\right]^{q-1} w_{n+1}(t)=a^{2+p} t^{p}\left\{\left[w_{n}(t)\right]^{q}-q\left[w_{n}(t)\right]^{q}\right\} \tag{8}\\
& w_{n+1}(0)=1 \quad w_{n+1}(1)=0
\end{align*}
$$

converging monotonically downwards from $u_{0}(t)=1-t$ to the solution of problem (6). Taking $a=1$, and therefore $t=x, w(t)=y(x)$ in the problem (6) and the approximating sequences (5) and (8), gives the respective sequences

$$
\begin{align*}
& y_{n+1}^{\prime \prime}(x)-q x^{p} y_{n+1}(x)=x^{p}\left\{\left[y_{n}(x)\right]^{q}-q y_{n}(x)\right\} \\
& y_{n+1}(0)=1 \quad y_{n+1}(1)=0 \tag{9}
\end{align*}
$$

and

$$
\begin{align*}
& y_{n+1}^{\prime \prime}(x)-q x^{p}\left[y_{n}(x)\right]^{q-1} y_{n+1}(x)=(1-q) x^{p}\left[y_{n}(x)\right]^{q} \tag{10}\\
& y_{n+1}(0)=1 \quad y_{n+1}(1)=0
\end{align*}
$$

converging to the solution of the generalized Emden problem

$$
\begin{align*}
& y^{\prime \prime}(x)=x^{p} y^{q}(x) \quad 0<x<1 \tag{11}\\
& y(0)=1 \quad y(1)=0 .
\end{align*}
$$

The next step is to discretize these sequences effectively. Choosing a uniform grid:

$$
0=x_{0}<x_{1}<\ldots<x_{N-1}<X_{N}=1
$$

with $h=1 / N, x_{r}=r h, r=1(1) N$ then, for $x=x_{r}, 1 \leqslant r \leqslant N-1$, we have for any iterative solution y :

$$
\begin{aligned}
& y(x+h)-2 y(x)+y(x-h) \\
& \quad=h^{2} y^{(2)}(x)+2 h^{4} y^{(4)}(x) / 4!+2 h^{6} y^{(6)}(x) / 6!+\cdots .
\end{aligned}
$$

Using (9) with $y^{(2)}(x)$ in place of $y_{n+1}^{\prime \prime}(x)$, then $y^{(2)}$ is expressible in terms of $y(x)$ and the previous iterate $y_{n}(x)$. For instance, for the first iterate in (9) with $y_{0}(x)=0$, we have

$$
y_{r+1}-\left(2+q h^{2+p} r^{p}\right) y_{r}+y_{r-1}=2 h^{4} y_{r}^{(4)} / 4!+2 h^{6} y_{r}^{(6)} / 6!+\cdots
$$

where $y_{r}=y\left(x_{r}\right)=y(r h)$, for $1 \leqslant r \leqslant N-1$. However, since the derivatives contain negative powers of x that are large for values of $x=r h$ close to zero, the accuracy can be seen to be at best $O\left(h^{2+p}\right)$. At least $O\left(h^{2}\right)$ accuracy is required for the effective use of the 'deferred approach to the limit' technique on the resulting discretization schemes. To accomplish this, all h^{2+p} terms are collected on the left-hand side giving, after a little algebra for series, the first lower iterate in (9):

$$
\begin{equation*}
y_{r+1}-\left(2+q h^{2+p_{r} p} \sum \alpha_{r, m}\right) y_{r}+y_{r-1}=O\left(h^{3+p}\right) \quad(1 \leqslant r \leqslant N-1) \tag{12}
\end{equation*}
$$

where $\sum \alpha_{r, m}=r^{2}\left[(1+1 / r)^{p+2}+(1-1 / r)^{p+2}-2\right] /(p+1)(p+2)(p>-1)$. The sum is the addition of all coefficients of terms in h^{2+p}. For subsequent (all) iterates, the general expression is
$y_{r+1}-\left(2+q v_{r}(h)\right) y_{r}+y_{r-1}=v_{r}(h) f_{r}+O\left(h^{3+p}\right) \quad(1 \leqslant r \leqslant N-1)$,
where $v_{r}(h)=h^{2+p_{r} p} \sum \alpha_{r, m}, f_{r}=\left\{\left[Y_{r}\right]^{q}-q Y_{r}\right\}$, with Y_{r} being value of previous iterate Y at $x_{r}=r h, \Sigma \alpha_{r, m}$ as in [12], and $p>-1$.

Similarly, in the case of the iterates (10), collecting all h^{2+p} terms on the left-hand side gives
$y_{r+1}-\left\{2+q v_{r}(h)\left[Y_{r}\right]^{q-1}\right\} y_{r}+y_{r-1}=v_{r}(h) g_{r}+O\left(h^{3+p}\right) \quad(1 \leqslant r \leqslant N-1)$
where $g_{r}=(1-q)\left[Y_{r}\right]^{q}$, with Y_{r} being value of previous iterate Y at $x_{r}=r h$, and $v_{r}(h)$, $\Sigma \alpha_{r, m}$ as defined in (13) and (12). For $p>-1$ we have $O\left(h^{2}\right)$ convergence for schemes (13) and (14).

All the discretization schemes have the form

$$
A_{n+1} Y_{n+1}=B_{n} \quad n=0,1,2, \ldots
$$

where Y_{n+1}, an $N-1$ column vector, is the approximation to the $(n+1)$ th iterate, A_{n+1} is a tridiagonal matrix of order $N-1$, and B_{n} is an $N-1$ column vector containing the boundary conditions and data relating to the nth iterate. Specifically, each matrix A has a constant value 1 in both the sub- and the super-diagonal and the diagonal element a_{r} of A_{n+1} for $1 \leqslant r \leqslant N-1$ is given by

$$
\begin{equation*}
a_{r}=-\left(2+q h^{2+p} r^{p} \sum \alpha_{r, m}\right) \tag{15}
\end{equation*}
$$

for iterations (9) with $p>-1, q>1$.
for iterations (10) with $p>-1, q>1$, where Y is the previous iterate. The elements $b_{r} \quad(1 \leqslant r \leqslant N-1)$ in the column vector B_{n} are given by $\left[\left\{b_{r}\right\}\right]^{T}=$ $[-1,0,0, \ldots, 0,0]^{T}+\left[\left\{\beta_{r}\right\}\right]^{T}$, with:

$$
\begin{equation*}
\beta_{r}=\left(h^{2+p} r^{p} \sum \alpha_{r, m}\right) f_{r} \tag{17}
\end{equation*}
$$

for iterations (9) with $p>-1$ and $q>1$, where $f_{r}=\left\{\left[Y_{r}\right]^{q}-q Y_{r}\right\}$, with Y being the previous iterate \{initially $Y_{r} \equiv 0$ for increasing or $Y_{r}=\left(1-x_{r}\right)=(1-r h)$ for a decreasing sequence $\}$.

$$
\begin{equation*}
\beta_{r}=\left(h^{2+p} r^{p} \sum \alpha_{r, m}\right) g_{r} \tag{18}
\end{equation*}
$$

for iterations (10) with $p>-1$ and $q>1$, where $g_{r}=(1-q)\left[Y_{r}\right]^{q}$, with Y being the previous iterate \{initially $Y_{r}=\left(1-x_{r}\right)=(1-r h)$ giving a decreasing sequence\}.

A tridiagonal routine is used to solve $A_{n+1} Y_{n+1}=B_{n}, n=0,1 \ldots$ Computations for a number of problems are presented in [17], and comparisons are made with previous methods. The results show high accuracy with a small amount of computer effort. In conclusion, the procedure is demonstrated fully for the ionized atom Thomas-Fermi boundary value problem (problem (11) with $p=-\frac{1}{2}$ and $q=\frac{3}{2}$).

We discuss the ionized atom Thomas-Fermi problem in detail:

$$
\begin{array}{lll}
y^{\prime \prime}(x)=x^{-1 / 2} y^{3 / 2}(x) & 0<x<1 \\
y(0)=1 & y(1)=0 . & \tag{19}
\end{array}
$$

The approximating sequences for this problem consist of the linear boundary value problems

$$
\begin{align*}
& y_{n+1}^{\prime \prime}(x)-\frac{3}{2} x^{-1 / 2} y_{n+1}(x)=x^{-1 / 2}\left\{\left[y_{n}(x)\right]^{3 / 2}-\frac{3}{2} y_{n}(x)\right\} \\
& y_{n+1}(0)=1 \quad y_{n+1}(1)=0 \tag{20a}
\end{align*}
$$

on using (9), and

$$
\begin{align*}
& y_{n+1}^{\prime \prime}(x)-\frac{3}{2} x^{-1 / 2}\left[y_{n}(x)\right]^{1 / 2} y_{n+1}(x)=-\frac{1}{2} x^{-1 / 2}\left[y_{n}(x)\right]^{3 / 2} \tag{20b}\\
& y_{n+1}(0)=1
\end{align*} \quad y_{n+1}(1)=0
$$

on using (10). The sequence $\left\{y_{n+1}\right\}, n \geqslant 0$, in (20a) converges monotonically from $y_{0}=0$, or from $y_{0}=1-x$, to the solution $y(x)$ of the Thomas-Fermi problem (19). The sequence $\left\{y_{n+1}\right\}$ in (20b) converges downwards from $y_{0}=1-x$ to the solution $y(x)$ of problem (19). The next step is to obtain finite difference approximations for the equations (20a) and (20b).

Discretizing the scheme (20a) gives, as in (13):

$$
\begin{equation*}
y_{r+1}+a_{r} y_{r}+y_{r-1}=v_{r} f_{r}+O\left(h^{5 / 2}\right) \tag{21}
\end{equation*}
$$

for $1 \leqslant r \leqslant N-1$, with $y_{0}=1, y_{N}=0$ where

$$
\begin{equation*}
a_{r}=-2\left\{1+h^{3 / 2}\left[(r+1)^{3 / 2}+(r-1)^{3 / 2}-2 r^{3 / 2}\right]\right\} \tag{21a}
\end{equation*}
$$

from (12), (15),

$$
\begin{equation*}
v_{r}=\frac{4}{3} h^{3 / 2}\left[(r+1)^{3 / 2}+(r-1)^{3 / 2}-2 r^{3 / 2}\right] \tag{21b}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.f_{r}=\left[Y_{r}\right]^{3 / 2}-\frac{3}{2} Y_{r}\right\} \tag{21c}
\end{equation*}
$$

with Y being the previous iterate. Hence we first solve the tridiagonal scheme $A Y_{\mathrm{t}}=B_{0}$, where A is a fixed tridiagonal matrix with sub and super diagonal elements equal to 1 and r th $(1 \leqslant r \leqslant N-1)$ diagonal element a_{r} given by (21a). In the scheme $A Y_{1}=B_{0}$ the column

$$
\begin{equation*}
B_{0}=\left[v_{1} f_{1}-1, v_{2} f_{2}, \ldots, v_{N-1} f_{N-1}\right]^{T} \tag{22}
\end{equation*}
$$

with v_{r} given by (21b) and f_{r} by (21c). If Y in (21c) is taken to be $Y=[0,0,0, \ldots, 0,0]^{T}$, then the solution Y_{1} of (22) is the first (discretized) lower Picard iterate for problem (19). This iterate is given in table $1 a$ for several discretizations $h=1 / N$. However, if Y in (21c) is taken to be

$$
\begin{equation*}
Y=[(1-h),(1-2 h), \ldots,(1-r h), \ldots,(1-(N-1) h)]^{T} \tag{23}
\end{equation*}
$$

Table 1a. First Picard lower bounds $y_{2}(x)$ for solution of (19). Lower bound $y_{2}(x)$ is the extrapolated limit of $y_{h}(x)$, using (27) $y_{h}(x)$ is solution of discretized first lower Picard iterate (22) $h=1 / N=1 / 1600, x=x_{r}=r h$ for $0 \leqslant r \leqslant N . D_{h}=y_{2 h}-y_{h}, D_{2 h}=y_{4 h}-y_{2 h}$ actual numerical values $=$ table entries $\times 10^{-9}$.

	$y_{h}(x)$ $N=1600$	D_{h} (1)	$y_{2 h}(x)$ $N=800$	$D_{2 h}$ (2)	$y_{4 h}(x)$ $N=400$	$y_{8 h}(x)$ $N=200$	x
$y_{1}(x)$							
816341088	816341161	219	816341380	862	816342242	816345597	0.1
676635195	676635271	227	676635498	895	676636393	676639899	0.2
560264866	560264937	211	560265148	834	560265982	560269256	0.3
459468617	459468680	187	459468867	739	459469606	459472510	0.4
369682481	369682534	159	369682693	628	369683321	369685793	0.5
287802887	287802930	129	287803059	510	287803569	287805576	0.6
211536747	211536780	98	211536878	387	211537265	211538790	0.7
139089613	139089635	66	139089701	261	139089962	139090992	0.8
068993124	068993135	34	068993169	132	068993301	068993823	0.9

then the solution Y_{1} of (22) is the first (discretized) upper Picard iterate for problem (19). This iterate is given in table $1 b$ for several discretizations $h=1 / N$.

The next step is to solve $A Y_{2}=B_{1}$, where B_{1} is defined as for B_{0} but with f_{r} now given in terms of the iterate Y_{1} (i.e. $Y=Y_{1}$). This enables a sequence of iterates Y_{1}, Y_{2}, \ldots to be constructed which converges to the solution of the discretized problem (19) at the grid points $x_{r}=r h, 1 \leqslant r \leqslant N-1$. The convergence rate is linear.

Finally, we describe the discretization of the quadratic scheme (20b). This gives, from (14),

$$
\begin{equation*}
y_{r+1}+a_{r} y_{r}+y_{r-1}=v_{r} g_{r}+O\left(h^{5 / 2}\right) \tag{24a}
\end{equation*}
$$

for $1 \leqslant r \leqslant N-1$, with $y_{0}=1$ and $y_{N}=0$, where

$$
\begin{equation*}
a_{r}=-2\left\{1+h^{3 / 2}\left[(r+1)^{3 / 2}+(r-1)^{3 / 2}-2 r^{3 / 2}\right]\left[Y_{r}\right]^{1 / 2}\right\} \tag{24b}
\end{equation*}
$$

v_{r} is given in (21b), and

$$
\begin{equation*}
g_{r}=-\frac{1}{2}\left[Y_{r}\right]^{3 / 2} \tag{24c}
\end{equation*}
$$

with Y being the previous iterate.
Table 1b. First Picard upper bounds $y^{1}(x)$ for solution of (19). Upper bound $y^{\prime}(x)$ is the extrapolated limit of $y_{h}(x)$, using (27) $y_{h}(x)$ is solution of discretized first upper Picard iterate (22) $h=1 / N=1 / 1600, x=x_{t}=r h$ for $0 \leqslant r \leqslant N . D_{h}=y_{2 h}-y_{h}, D_{2 h}=y_{A h}-y_{2 h}$ actual numerical values $=$ table entries $\times 10^{-9}$.

$y^{1}(x)$	$y_{h}(x)$ $N=1600$	D_{h} (1)	$y_{2 h}(x)$ $N=800$	$D_{2 h}$ (2)	$y_{4 h}(x)$ $N=400$	$y_{8 h}(x)$ $N=200$	x
850718983	850719042	175	850719217	690	850719907	850722597	0.1
729624593	729624655	184	729624839	725	729625564	729628409	0.2
626610569	622610627	173	622610800	684	622611484	622614172	0.3
524332582	524332634	155	524332789	613	524333402	524335814	0.4
431691062	431691106	133	431691239	528	431691767	431693846	0.5
342650317	342650354	110	342650464	435	342650899	342652612	0.6
255798924	255798952	84	255799036	336	255799372	255800697	0.7
170144790	170144809	58	170144867	232	170145099	170146012	0.8
085012173	085012183	30	085012213	121	085012334	085012811	0.9

Hence we first solve the tridiagonal scheme

$$
\begin{equation*}
A_{1} Y_{1}=B_{0} \tag{25}
\end{equation*}
$$

where A_{1} has the same form as the matrix A in (22) but with the diagonal elements a_{r}, as given by ($24 a$), iterate dependent (on Y). The column $B_{0}=\left[v_{1} g_{1}-1\right.$, $\left.v_{2} g_{2}, \ldots, v_{N-1} g_{N-1}\right]^{T}$, with v_{r} given by (21b) and g_{r} by (24c), where Y is as in (23a). The solution Y_{1} is the first (discretized) upper Newton iterate for the problem (19). This iterate is given in table $1 c$ for several discretizations $h=1 / N$. We next solve $A_{2} Y_{2}=B_{1}$, where A_{2} has diagonal elements given by ($24 a$) with $Y=Y_{1}$, the previously found iterate, and the column B_{1} is the same as B_{0} but with g_{r} now in terms of the previous iterate $Y=Y_{1}$. Then the quadratically convergent sequence ($20 b$) discretizes as $A_{n+1} Y_{n+1}=B_{n}, n=0,1, \ldots$, producing a sequence $\left\{Y_{n+1}\right\}$ converging to the solution of the discretized problem (19) at the grid points $x_{r}=r h(1 \leqslant r \leqslant N-1)$.

Table 1c. First Newton upper bounds $y^{1}(x)$ for solution of (19). Upper bound $\underline{y}^{1}(x)$ is the extrapolated limit of $y_{h}(x)$, using (27) $y_{h}(x)$ is solution of discretized first upper Newton iterate (25) $h=1 / N=1 / 1600, x=x_{r}=r h$ for $0 \leqslant r \leqslant N . D_{h}=y_{2 h}-y_{h}, D_{2 h}=y_{4 h}-y_{2 h}$ actual numerical values $=$ table entries $\times 10^{-9}$.

	$y_{h}(x)$ $N=1600$	D_{h} (1)	$y_{2 h}(x)$ $N=800$	$D_{2 h}$ (2)	$y_{4 h}(x)$ $N=400$	$y_{\text {sh }}(x)$ $N=200$	x
$\underline{y}^{\mathrm{I}}(x)$							
849621180	849621239	177	849621416	694	849622110	849624817	0.1
727501050	727501112	186	727501298	733	727502031	727504903	0.2
619644832	619644890	175	619645065	694	619645759	619648484	0.3
520800241	520800294	158	520800452	625	520801077	520803534	0.4
427928975	427929021	137	427929158	540	427929698	427931825	0.5
339023757	339023795	113	339023908	446	339024354	339026113	0.6
25266904	252669033	87	25266120	346	25669466	25260828	0.7
167836520	167836540	60	167836600	238	167836838	167837777	0.8
083782101	083782111	31	083782142	124	083782266	083782753	0.9

The discretized problems (21) and (24) were solved for several mesh widths h between $h=0.5 \times 10^{-2}$ and $h=0.625 \times 10^{-3}$ and the difference columns (1) and (2) obtained as indicated in the tables. These difference columns were used with either of the 'deferred approach to the limit' formulae:

$$
\begin{align*}
& s=\frac{d}{3}+p \tag{26}\\
& s=\frac{19 d}{45}-\frac{e}{45}+p \tag{27}
\end{align*}
$$

where h is the uniform mesh width, s is the solution using the 'deferred correction' formula, p is the approximate solution y_{h} with mesh size h, and d, e are the differences $y_{h}-y_{2 h}, y_{2 h}-y_{4 h}$, respectively. This produces the columns for $s=y_{1}, y^{1}, \underline{y}^{1}$, and \underline{y} shown in tables 1 and 2. For an $O\left(h^{2}\right)$ accurate discretization process, formula (27) is the more accurate. The $O\left(h^{2}\right)$ accuracy is demonstrated by the difference columns (1), (2) in the tables being in the ratio $1: 4$. In the tables, $y_{1}(x)$ and $y^{1}(x)$ are the first lower and upper bounds for the solution of the Thomas-Fermi problem (19), obtained by using (20a) with $y_{0}(x)=0$ and $y_{0}(x)=1-x$, respectively. Also, $\underline{y}^{\prime}(x)$ is the first

Table 2. Accurate numerical solution of (19) by iteration. Solution $\underline{y}(x)$ is the extrapolated limit of $y_{h}(x)$, using (27) $y_{h}(x)$ is iterated solution of either scheme (21) or scheme (24) $h=1 / N=1 / 1600, x=x_{r}=r h$ for $0 \leqslant r \leqslant N . D_{h}=y_{2 h}-y_{h}, D_{2 h}=y_{4 h}-y_{2 h}$ actual numerical values $=$ table entries $\times 10^{-9}$.

	$y_{h}(x)$ $N=1600$	D_{h} (1)	$y_{2 h}(x)$ $N=800$	$D_{2 h}$ (2)	$y_{4 h}(x)$ $N=400$	$y_{8 h}(x)$ $N=200$	x
$\underline{y}(x)$	849474441	177	849474618	695	849475313	849478024	0.1
849474382	727231915	187	727232102	735	727232837	727235717	0.2
727231852	619294575	176	619294751	697	619295448	619298186	0.3
619294515	520414560	158	520414718	629	520415347	520417819	0.4
520414506	527550063	138	427550201	544	427550745	427552888	0.5
427550017	42750						
338686150	338686188	114	338686302	450	338686752	338688526	0.6
252398194	252398223	88	252398311	349	252398660	252400035	0.7
167649022	167649042	61	167649103	240	167649343	167650291	0.8
083686767	083686778	32	083686810	125	083686935	083687427	0.9

upper bound obtained using (20b) with $y_{0}(x)=1-x$. Applying (20a) and (20b) iteratively, the iterates $y_{8}(x), y^{7}(x)$ and $y^{3}(x)$ were found to be identical to nine decimal places for each discretization $h=1 / N$ used, and are given as discretized solutions $y_{h}(x)$ for problem (19) in table 2. Applying the formula (26) or (27) gives the column for $s=\underline{y}(x)$, the approximate solution of (19) to nine decimal places given in table 2.

The tabulated results agree with those in [4]. These are given without the decimal point for clarity, the actual values being multiplied by 10^{-9}.

In conclusion, when the interval length a in (6) is larger than 20, at least 100 iterations are required for the scheme (9) but only 6 for the scheme (10). In these cases, Chan's method [4] is expensive. The discretization schemes were realized using double precision on an IBM PC (640 K) with maths co-processor. The method can be used with other boundary conditions and on problems where there is a degeneracy of class $D_{P}^{2}, 0<P<1$, on the boundary. Finally, other more general physical problems may often reduce to a problem of the form (11).

References

[1] Alexiades V 1982 Arch. Rat. Mech. Anal. 79325
[2] Ascher U M, Mattheij R M M and Russell R D 1988 Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (Englewood Cliffs, NJ: Printice-Hall)
[3] Bellman R E and Kalaba R 1965 Quasilinearisation and Nonlinear Boundary Value Problems (New York: Elsevier)
[4] Chan C Y and Hon Y C 1987 Quart. Appl. Math. 45591
[5] Chandrasekhar S 1942 Princtples of Stellar Dynamics ch 5 (Chicago: University of Chicago Press)
[6] Chandrasekhar S 1957 Introduction to the Study of Stellar Structure ch 4 (New York: Dover)
[7] Emden R 1907 Anwendungen der mechanischen Warmetheorie auf Kosmologie und meteorologischen Probleme (Leipzig: Teubner)
[8] Fermi E 1927 R. C. Accad. Naz. Lincei (6) 6602
[9] Fox L 1980 Computational Techniques for Ordinary Differential Equations ed I Gladwell and D K Sayers (London: Academic Press)
[10] Gidas B, Ni W M and Nirenberg L 1979 Commun. Math. Phys. 68209
[11] Goldman M V 1984 Rev. Mod. Phys. 56709
[12] Kelley P L 1965 Phys. Rev. Lett. 151005.
[13] Kwong M K 1990 ZAMP 4179
[14] Mooney J W and Roach G F 1976 Proc. R. Soc. Edinburgh (A) 7681
[15] Mooney J W 1978 Quart. Appl. Math 36305
[16] Mooney J W 1979 Math. Meth. Appl. Sci. 1554
[17] Mooney J W 1992 Monotone Computational Procedures for Generalised Emden Equations Glasgow Polytechnic Math. Tech. Report
[18] Oliker V I 1987 Inverse Problems 3743
[19] Solomon A D 1979 Solar Energy 22251
[20] Thomas L H 1927 Proc. Camb. Phil. Soc. 23542
[21] Wong J S W 1975 SIAM Review 17339

