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LETl’ER TO THE EDITOR 

Numerical schemes for degenerate boundary value problems 

J W Mooney 
Department of Mathematics, Glasgow Caledonian Udiversity, Glasgow G4 OB& UK 

Received 1 December 1992 

Abstmd. Methods for accurately determining solutions of degenerate boundary value 
problems are described. Nonlinear problems are first approximated by sequences of linear 
problems. A finite difference procedure which incorporates the effect of the degeneracy in 
ihe matrix of the linear discretized system of equations is developed. The simple tridiagonal 
smcture of ihe matrix allows fast, accurate calculations to be performed with quite modest 
computer support. The results are readily improved using Richardson extrapolation. 

Various physically important phenomena have been described using differential 
equations which degenerate at the boundary. These equations may be linear or non- 
linear, and their solution causes numerical difficulties due to at least one of the 
derivatives of the solution becoming infinite at a boundary value 191. In the case of 
nonlinear problems a quasilinearizaton technique [3] is often applicable, producing a 
sequence of degenerate linear differential equations converging to a solution of the 
nonlinear problem [15,16]. However, approximation of a degenerate problem using 
a standard finite difference scheme is rarely satisfactory, particularly near the source 
of the degeneracy. Our aim is to illustrate how a new discretization technique can be 
used to provide accurate solutions simply and rather efficiently. 

In many physical systems described by partial differential equations involving the 
Laplacian and the Duichlet boundary conditions, the property of radial symmetry 
allows a reduction to a differential equation with one independent space variable 
(ordinary differential equation) or a partial differential equation in exactly two (one 
space, one time) variables. The dependency of the solution U on the ‘radial‘ space 
variable r will then involve terms of the form U”+ ( b /  *)U‘. This is the case for nonlinear 
reaction-diffusion equations [ 101 where radially symmetric solutions play a useful role. 
The cubic Schrodinger equation in (n+ 1)-dimensional spacetime reduces to a form 
containing the space derivatives U”+ ((n - l)/r)u’. Particular cases arise in nonlinear 
optics, where n = 2 and U is the envelope of an electromagnetic wave [12], and plasma 
physics, where n = 3 and U is the envelope of a Langmuir wave [ 111. There are physical 
applications for non-integral values of b also. In the theory of generalized axially 
symmetric heat potentials, values of b in the interval [0,2] arise when describing the 
conduction of heat in bodies of various shapes [l, 191. Finally, even when a problem 
is not inherently symmetrical, radially symmetric solutions may be a launchpad for a 
perturbation analysis [IS]. 

However, one major problem associated with the reduction process we have 
described arises when a boundary condition at r=O is present. The differential form 
u”+(b/r)u’ will have an unwelcome singularity when b # 0 ,  and degeneracy is said 
to occur at r = 0. 

03054470/93/OS0413+osS07.50 0 1993 IOP Publishing Ltd L413 
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To analyse this situation further, we consider the ordinary differential equation 
U"+ (b/r)u'+f(r)g(u) = 0, wherefand g are continuous functions. This is equivalent 
to the equation 

(rbu')'+rbf(r)g(u) =o. (1) 

When f( r) = r" and g( u )  = U', with a, b, c real numbers and e> 0, (1) is the Emden- 
Fowler equation. For a =0, b =2, e =  n, typically 1.5 or 2.5, (1) is of importance in 
gas dynamics [5,6]. There are more recent applications in fluid mechanics, relativistic 
mechanics, nuclear physics and chemically reacting systems and excellent bib- 
liographies have been published [13,21]. Equation (1) can be further reduced to the 
form y " ( x ) +  h ( x , y ( x ) ) = O  by a Liouville transformation. When f, g are power funo 
tions, then h is a product of powers of x and y.  Consequently, there are many physical 
phenomena whose behaviour can be related to the solution y of the nonlinear equation 
y" (x )=  cxpyq(x),  (e=constant). 

For illustration, we apply the numerical procedure to the degenerate two point 
boundary value problem 171: 

y"(x) =x 'y4(x)  (2) 

with - 2 < p < O ,  q>l,andy(O)=l,y(a)=O.Theparticularcasep=-$, q=garises 
in the case of an ionized atom in Thomas-Fermi theory [8,20]. 

We specify the nature of a degeneracy by means of the limit 

lim { y R ( x ) ( x - p ) ' }  = k 
x - P  

where yr is the rth derivative of any solution, p is a boundary point, k is a real constant, 
R = min{r: y ' (a )  is infinite}, and P is the smallest positive rational number for which 
the limit is finite. The degeneracy is said to be of order ( R ,  P) at x = p or the differential 
equation to be (degenerate) of class D:! at x = p .  The problem (2) will be approximated 
by sequences of linear two point boundary value problems each being discretized to 
form a tridiagonal matrix system. Accurate numerical solutions can be obtained when 
the equation is of class D$, with 0 < P < 1 at x = 0. If p < -1, the problem is of class 
DIl-p and the solution of the discretized equations will not represent the solution of 
the nonlinear problem as accurately in this case. 

The first step is to obtain algorithms for the sequence of linear boundary value 
problems which can be used to approximate the problem. The problem (2) is transfor- 
med to the form 

- i i ( t )+a'+PqtPu(t )  = a 2 + p t p [ ( l  - t )  - u ( t ) ] ~ + a * + P q t P ~ ( t )  

u(O)= u(l)=O 
(3) 

which is a generalization of the form (5.2) in [15], possessing homogeneous boundary 
conditions, and a solution u ( t )  satisfying u ( t ) = ( l - - f ) - - y ( r a ) = ( l - x / n ) - y ( x ) ,  for 
x in [0, a] .  

Generalizing on the method for developing the algorithm (3.3) in [15], we obtain 

(4) 

converging monotonically upwards from uo( t )  = 0 and downwards from ua( I) = 1 - t 
to the solution of the transformed general Emden problem (3). 

- uE+l(f) + a2+Pqtpun+l(t) = az+ptp[(l - t ) - U . ( t ) ] ' +  a2+pqtpU,(t) 

~ . + , ( 0 ) = ~ . + 1 ( ~ ) = 0  
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Putting u j ( t ) = ( l - t ) - w , ( t )  in ( 4 )  abovegives 

w:+I ( I )  - 02+PqtpWn+,(t) = u"PtP{[w.(t)]9 - qw.( t ) }  

w.+m = 1 W . + I ( l )  =o 
( 5 )  

with w ( t )  = y ( t a )  = y ( x ) ,  and w.( t )  converging to the solution of the problem 

w " ( t )  = aZ+'tPw9(t) 

w ( 0 )  = 1 w ( l ) = O .  

This algorithmic scheme has linear or first-order convergence. A faster, one-sided 
scheme, may be obtained by quasilinearization. Thus, for a particular problem, this 
approach is capable of providing several numerical schemes whose results can be 
compared. Generalizing on the algorithm (3.4) in 1151, we can obtain the second-order 
scheme 

- ~ : + ~ ( t )  = a z + p t P [ ( l  - t )  - u. ( t ) ]4 -  p qf U 1  - 0 -un(t)19-Yu"+l(t) - - u n ( N  
U"+l(O) = u.+1(1) = o  

(7) 

which converges monotonically upwards from uo(f) = 0 to the solution of the transfor- 
med Emden problem (3) above, on the interval [0,1). 

Now putting u l ( t ) = ( l - f ) - w j ( t )  in ( 7 )  gives 

w;+ , ( t )  - a Z + p q ~ p [ ~ n ( t ) ] 9 - '  w.+]( t )  = ~ * + ~ t ~ { [ w . ( t ) ] ~  - q [ w . ( ~ ) ] ~ ]  

W " + l ( O )  = 1 w,+1(1)=0 
(8) 

converging monotonically downwards from uo(t)  = 1 - t to the solution of problem 
(6 ) .  Taking a = l ,  and therefore f = x ,  w ( t ) = y ( x )  in the problem (6)  and the 
approximating sequences ( 5 )  and (S), gives the respective sequences 

( 9 )  
K + l ( X )  - qxpY"+,(x) = XP{[Y.(X)I4 - qv . (x ) }  

y.+,(O)= 1 Y"+l( l )  = o  

Y ~ + l ~ ~ ~ - ~ ~ ~ ~ Y " ~ ~ ~ l ~ - l Y " + l ~ x ~  =(I  -q)xP'[Yn(X)l9 

Y.+l(O) = 1 Y"+I(l)  =o 

y"(x)=x4y'(x)  O < X < l  

Y ( 0 )  = 1 y(l)=O. 

and 

(10)  

converging to the solution of the generalized Emden problem 

(11) 

The next step is to discretize these sequences effectively. Choosing a uniform grid: 

o =  x , < x ,  <. . . <X&I C X ,  = 1 

with h = l / N , x , = r h , r =  l(l)Nthen,forx=x,,l<r<N-1,wehaveforanyiterative 
solution y :  

Y ( X f  h ) - 2 y ( x ) + y ( x  - h )  
= h2y(')(x) +2h4yJ4 ' (x ) /4!+  2h6y'@(x)/6!+.  . . . 
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Using (9) with y"' (x)  in place of y;+](x), then y"' is expressible in terms of y ( x )  and 
the previous iterate y&). For instance, for the first iterate in (9) with yo(x)  = 0, we have 

y,+l- (2+ qh2+PP)y,+y,-, 2h4y~4'/4!+2k6y~'/6!+. . . 
where y, = y(x , )  = y(rh), for 1 S r S N - 1.  However, since the derivatives contain 
negative powers of x that are large for values of x = rk close to zero, the accuracy can 
be seen to be at best O(h2+"). At least O(h2) accuracy is required for the effective use 
ofthe 'deferred approach to the limit' technique on the resulting discretization schemes. 
To accomplish this, all h2+p terms are collected on the left-hand side giving, after a 
little algebra for series, the first lower iterate in (9): 

y ,+ l - (2+qkZCprp~  a,,,)yr+y,-, ( 1 s r s N - I )  (12) 

where 2 a,., = ?[( 1 + l /r)  - 2]/( p + 1 ) (  p +2) ( p  > - 1) .  The sum is 
the addition ofall coefficients of terms in k2+p. For subsequent (all) iterates, thegeneral 
expression is 

Y,+I -(2+qur(h))y,+y,-i ur(k).L+O(h3"P) ( I s r S N - 1 )  (13) 

where u,(k) = h 2 + V  E a,.,, .L = {[ Y,Iq -qY,), with Y, being value of previous iterate 
Y a t  x,=rh,Za, ,asin[lZ],andp>-l .  

Similarly, in the case of the iterates (IO), collecting all kzCp terms on the left-hand 
side gives 

(1 - I /r )  

y,+] - { 2 + q ~ , ( k ) [ Y , l ' - ' ) y , + y , - ~  =u , (h )g ,+O(h3+P)  ( I S  r S N - 1 )  (14) 

where g, = (1 - q)[ XI9, with Y, being value of previous iterate Y at x, = rk, and u,(h) ,  
2 agm as defined in (13) and (12). For p > -1  we have O(kZ) convergence for schemes 
(13 )  and (14). 

All the discretization schemes have the form 

n =0 ,1 ,2 , .  . . & + I  K+I = B n  

where Y,,], an N-1 column vector, is the approximation to the (n+l)th iterate, 
A.+ , is a tridiagonal matrix of order N - 1, and B. is an N - 1 column vector containing 
the boundary conditions and data relating to the nth iterate. Specifically, each matrix 
A has a constant value 1 in both the sub- and the super-diagonal and the diagonal 
element Q, of An+, for 1 G r s  N - 1 is given by 

U, = -(2+ qk2+pP a,,,) (15) 

for iterations (9) withp>-1, q > l .  

a,= -{2+q(k2+prp 1 ar,m)[Y,]q-l)  (16) 

for iterations (10) with p >  - 1 ,  q >  1, where Y is the previous iterate. The elements 
6, (1 s r S  N-1) in the column vector B. are given by [{6,)]'= 
[ - l , O , O , .  . . , 0,O]'+[{P,}lT, with: 

P, = (hZfPrP Z a,,M (17) 
for iterations (9) with p > -1 and q > 1, where .L = {[ YrIq - qY,), with Y being the 
previous iterate {initially Y, = 0 for increasing or Y, = (1 - x,) = (1 - rk) for a decreasing 
sequence}. 

(18) 64 = (h2+Prp C a,,&, 
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for iterations (10) with p > -1 and q > 1, where g, = (1 - q)[ Y,I4, with Y being the 
previous iterate {initially Y, = (1  - x,) = ( 1 - rh )  giving a decreasing sequence}. 

A tridiagonal routine is used to solve An+l Ym+i = B., n =0, 1. . . . Computations for 
a number of problems are presented in [ 171, and comparisons are made with previous 
methods. The results show high accuracy with a small amount of computer effort. In 
conclusion, the procedure is demonstrated fully for the ionized atom Thomas-Fermi 
boundary value problem (problem (11) with p = -f and q =!). 

We discuss the ionized atom Thomas-Fermi problem in detail: 

y"(x)  x- ' /2Y3/7x)  O < X < l  

1") =! y(l)=O. 

r:+l(x)-P Y " + l ( ~ ) = ~ - 1 ~ z ~ [ Y " ( x ) 1 3 ' 2 - ! Y ~ ~ ( x ) J  

Y"*I(O) = 1 Y"*l(l) = o  

Y:+l(x) - P  [Y.(x)l"2Y"+,(x) = -5x-'/2LYn(x)13/2 

Y"+I(O) = 1 Y,+i(l)=O 

(19) 

The approximating sequences for this problem consist of the linear boundary value 
problems 

3 -1/z 

(20a) 

on using (9), and 
3 - i / 2  

on using (10). The sequence (y.+,}, n>O, in (2Oa) converges monotonically from 
yo = 0, or from yo = 1 - x, to the solution y ( x )  of the Thomas-Fenni problem (19). The 
sequence {yn+,} in (206) converges downwards from yo= 1 - x  to the solution y ( x )  of 
problem (19). The next step is to obtain finite difference'approximations for the 
equations (20a) and (20b). 

Discretizing the scheme (2Oa) gives, as in (13): 

Y , + ~  + az, + yr-l = urf, + ~ ( h " ~ )  

a, = -2{1+ h3l2[ (r+  1)3/2+ ( r -  1)~/'-2r~/']} 

U, =$h'"[(r+ 1)3/2+ (I- 1)3f2 - 2r3'2] (216) 

L=[ Yr13/2-4Y,} (21c) 

(21) 
for 1 G r G N - 1 ,  w i thyn= l ,yN=O where 

from (12), (15), 

and 

with Y being the previous iterate. Hence we first solve the tridiagonal scheme AY, = Bo, 
where A is a fixed tridiagonal matrix with sub and super diagonal elements equal to 
1 and rth (1 S r <  N - 1) diagonal element a, given by (21a). In the scheme AY, = Bo 
the column 

Bo=[u,f, - 1, U z f 2 , .  . . , UN-,fN-1IT (22) 
withu,givenhy(21b)andf,by(21c).If Yin(21c)istakentobe Y=[O,O,O, ..., O,O]', 
then the solution Yl of (22) is the first (discretized) lower Picard iterate for problem 
(19). This iterate is given in table l a  for several discretizations h = 1/N. However, if 
Y in (21c) is taken to be 

Y =  [( 1 - h ) ,  (I - 2 h ) ,  . . . , (1 - rh), . . . , (1 - ( N -  1)h)l' (23) 
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Table la. First Picard lower bounds y , ( x )  for solution of (19). Lower bound y l ( x )  is the 
extrapolated limit of y k ( x ) ,  using (27) h ( x )  is solution of discretized first lower Picard 
iterate (22) h=l/N=1/1600. x - x , - r h  for 0 4 r 4 N .  D h = y 2 0 - y , ,  D 2 r = y . h - y 2 0  
actual numerical values = table entries x 

Y h ( 4  9 ~ z r ( x )  D m  Y&) Y B k d  
Y d X )  N = 1600 (1)  N=800 (2) N = M  N=U)O X 

816 341 088 
676 635 195 
560 264 866 
459 468 617 
369 682 481 
287 802 881 
21 1 536 747 
139089613 
068 993 124 

816341 161 
676 635 271 
560 264 931 
459 468 680 
369 682 534 
287 802 930 
21 1 536 780 
139 089 635 
068 993 135 

219 816341380 
227 616635498 
211 560265148 
181 459468867 
159 369 682 693 
129 287 803 059 
98 211 536878 
66 139089701 
34 068993 169 

862 
895 
834 
739 
628 
510 
387 
26 1 
132 

816342242 
676 636 393 
560 265 982 
459 469 606 
369 683 321 ~ 

287 803 569 
211 537 265 
139 089 962 
068 993 301 

816 345 597 
676 639 899 
560 269 256 
459 412510 
369 685 793 
287 805 576 
211538790 
139090992 
068 993 823 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

then the solution Yl of (22) is the first (discretized) upper Picard iterate for problem 
(19). This iterate is given in table 1 b for several discretizations h = I /  N. 

The next step is to solve AY, = B, , where B1 is defined as for Bo but with J now 
given in terms of the iterate Yl (i.e. Y = Y,) .  This enables a sequence of iterates Y , ,  
Yz, . . . to be constructed which converges to the solution of the discretized problem 
(19) at the grid points x, = rh, 1 s r s N - 1. The convergence rate is linear. 

Finally, we describe the discretization of the quadratic scheme (206). This gives, 
from (14), P 

y,+,+ a,y,+Y,-, = v , g , + 0 ( h 5 9  (240) 

a, = -2{1+ h’”[(r+ I)’/’+ ( r -  1)3’2-2r’’Z1[ Y,l’/*} (246) 

g, = -$[ Y,]”Z (244  

for l < r <  N-1, with y,=1 and y ,  =0,  where 

v, is given in (Zlb), and 

with Y being the previous iterate. 

Table ib. First Picard upper bounds y ’ ( x )  for solution of (19). Upper bound y ‘ ( x )  is the 
extrapolated limit of y&), using (27) y h ( x )  is solution of discretized first upper Picard 
iterate (22) h=1/N=1/1600, x=x,=rh for O s r s N .  D A = y Z h - y , , ,  D 2 h = y 1 1 - y I h  
actual numerical values=tablc entriesx IO+. 

Y Y X )  

850718 983 
729 624 593 
626610569 
524 332 582 
431 691 062 
342 650 317 
255 798 924 
170144790 
085 012 173 

850 719 042 
729 624 655 
622610627 
524332 634 
431 691 106 
342 650 354 
255 798 952 
170 144809 
085 012 183 

- 
175 
184 
173 
155 
133 
110 
84 
58 
30 

Y l h ( X )  
N=800 

850719 217 
729 624 839 
622 610 800 
524332789 
431 691 239 
342 650 461 
255799036 
I70 144 867 
085012213 

- 
690 
725 
684 
613 
528 
435 
336 
232 
I21 

Y . h ( X )  
N=400 

850719907 
729 625 564 
622 61 1 484 
524 333 402 
431 691 767 
342 650 899 
255 799 372 
170 145 099 
085012334 

850 722 597 
729 628 409 
622614172 
524335814 
431 693 846 
342 652 612 
255800697 
170146012 
085012811 

X - 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 



Letter to the Editor L419 

Hence we first solve the tridiagonal scheme 

A, Yl = Bo (25) 

where A, has the same form as the matrix A in (22) but with the diagonal elements 
a,, as given by (24a), iterate dependent (on Y). The column Bo=[u,gl-l, 
q g , ,  . . . , U N - ~ ~ N - ~ ] ‘ ,  with U, given by (216) and g, by (24c), where Y is as in (23a). 
The solution Y, is the first (discretized) upper Newton iterate for the problem (19). 
This iterate is given in table IC  for several discretizations h = 1/N. We next solve 
A2 U, = B, , where A2 has diagonal elements given by (240) with Y = Yl , the previously 
found iterate, and the column B, is the same as Bo but with g, now in terms of the 
previous iterate Y = Y , .  Then the quadratically convergent sequence (206) discretizes 
as An+, Y,,, = B., n = 0,1,. . . , pmducing a sequence { Y,,,} converging to the solution 
of the discretized problem (19) at the grid points x, = rh ( 1  S r <  N - 1) .  

Table le. First Newton upper bounds y ‘ ( x )  for solutioo of (19). Upper bound y ’ ( x )  is 
theextrapolated limitofy,(x), using (27) y h ( x )  issolution ofdiscretized first upper Newton 
iterate (25) h=I/N=1/1600, x = x , = r h  for O S r s N .  Dh=y2h-yhr  Dth=y,,,,-yzh 
actual numerical values = table entries x 10”. 

849621 180 
727 501 050 
619 644 832 
520 800 241 
427 928 975 
339 023 757 
252 669 004 
167836 520 
083 782 101 

849 621 239 
727 501 112 
619 644 890 
520 800 294 
427 929 021 
339 023 795 
252 669 033 
167 836 540 
083782111 

177 
186 
175 
158 
I37 
113 
87 
60 
31 - 

849621 416 
727 501 298 
619 645 065 
520 800 452 
427 929 158 
339 023 908 
252 669 120 
167 836 600 
083 782 142 

694 
733 
694 
625 
540 
446 
346 
238 
124 

849 622 1 IO 
727 502 031 
619 645 759 
520801 077 
427 929 698 
339 024 354 
252 669 466 
167 836 838 
083 782 266 

849 624 817 
727 504903 
619 648 484 
520 803 534 
427 931 825 
339026113 
252 670 828 
167 837 777 
083 782 753 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 - 

The discretized problems (21) and (24) were solyed for several mesh widths h 
between h = 0 . 5 ~ 1 0 - ~  and h=0.625x lov3 and the difference columns (1) and (2) 
obtained as indicated in the tables. These difference columns were used with either of 
the ‘deferred approach to the limit’ formulae: 

d s = - + p  
3 

19d e s=----+ 
45 45 P 

where h is the uniform mesh width, s is the solution using the ‘deferred correction’ 
formula, p is the approximate solution yh with mesh size h, and d, e are the differences 
yh -yZhr  yzh -y4,,, respectively. This produces the ,columns for s = y , ,  yl, p’, and y 
shown in tables 1 and 2. For an O ( h 2 )  accurate discretization process, formula (27) 
is the more accurate. The O(hZ) accuracy is demonstrated by the difference columns 
(l), (2) in the tables being in the ratio 1 :4. In the tables, y , ( x )  and y ’ ( x )  are the 6rst 
lower and upper bounds for the solution of the Thomas-Fenni problem (19), obtained 
by using (20a) with yo(x)  = O  and yo(x) = 1 - 5  respectively. Also, p’(x) is the first 
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Table 2. Accurate numerical solution of (19) by iteration. Solution ~ ( x )  is the extrapolated 
limit of yh(x) .  using (27) yh(x)  is iterated solution of either scheme (21) or scheme (24) 
h = 1/N = l/1600, x =x, = rh for04 r €  N. 4 = yZn -yh,  Dzh = y,h - yZh actual numerical 
values=table enviesx 

849 474 382 
727231 852 
619294515 
520 414 506 
427 550017 
338 686 150 
252398 194 
167 649 022 
083 686 767 

849 474 441 
127231 915 
619 294 575 
520414560 
427 550 063 
338 686 188 
252 398 223 
167 649 042 
083 686 778 

177 
I87 
176 
158 
138 
114 
88 
61 
32 

849474618 
727 232 102 
619 294751 
520 414 718 
427 550201 
338 686 302 
252398 311 
167649 103 
083 686 810 

695 
735 
697 
629 
544 
450 
349 
240 
125 

849475 313 
727 232 837 
619 295 448 
520415347 
427 550 745 
338 686 752 
252 398 660 
167 649 343 
083 686 935 

849 478 024 
12723.5 717 
619298 186 
520417 819 
427 552888 
338 688 526 

167 650291 
083 687 427 

25~400035 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

upper bound obtained using (206) with y o ( x ) = l - x .  Applying (20a) and (206) 
iteratively, the iterates y 8 ( x ) ,  y ’ (x )  and y ’ (x )  were found to be identical to nine decimal 
places for each discretization h = l / M  used, and are given as discretized solutions 
y h ( x )  for problem (19) in table 2. Applying the formula (26) or (27) gives the column 
for s = p ( x ) ,  the approximate solution of (19) to nine decimal places given in table 2. 

The tabulated results agree with those in [4]. These are given without the decimal 
point for clarity, the actual values being multiplied by 

In conclusion, when the interval length a in (6) is larger than 20, at least 100 
iterations are required for the scheme (9) but only 6 for the scheme (10). In these 
cases, Chan’s method 141 is expensive. The discretization schemes were realized using 
double precision on an IBM PC (640K) with maths co-processor. The method can be 
used with other boundary conditions and on problems where there is a degeneracy of 
class D;, O < P <  1, on the boundary. Finally, other more general physical problems 
may often reduce to a problem of the form (11). 
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